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Analytical expressions for ze ros of algebraic polynomials and of entire transcendental
functions find many applications in solving some problems of mechanics (such as stability
of fluid flows, breakup of fluid currents e.a.). These expressions can be obtained by
expanding the zeros of a given function into a power series in terms of its parameters.

A considerable amount of literature dealing with this problem exists [1to12], but in
most instances either usable expressions are not derived, or they are derived only for some
particular function. Lakhtin obtains in [1] expressions for zeros of algebraic polynomials
in terms of hypergeometric functions. In more recent work of Belardinelli [2] an exhaus-
tive review of relevant investigations is given together with author’s own results which,
unfortunately, again are not in a form which could easily be applied to functions of suffic-
iently general type.

In the present paper an attempt is made to obtain, by elementary means, expansions of
zeros of entire functions (including algebraic polynomials of any degree) in a form suitable
for practical application. Several examples from mechanics and numerical methods show
practical application of the obtained series.

1. Let
f(2) =po +pi + pa® + ..o .1
where u = z — £ is an entire function of 2, expanded in a series at the point £ lying near
one of the zeros of f(z). By the definition of entire function, series (1.1) converges for any
finite z and &.
We know (Hurwitz [13]) that if f1(2), f2(2), ... is a sequence of functions analytic in
some region D bounded by a simple closed contour, if f (z) + f(z) uniformly in D and
f(z} # 0, then the point zy lying within D is a zero of f(z) if and only if it is a limit point
of a set of zeros of the function f,(z).
Therefore, if f(z) is an entire function and the series (1.1) representing it converges
at any finite point of a plane, then the sequences of zeros of partial sums of the expansion
(1.1) converge to the zeros of f(z).
We shall represent a zero of f(z) by an expansion
U = ay + a;pg + a;pg* + ... (1.2)
in powers of py. Let us introduce the notation
U = (ag + a1pg + P> + ...)° =y + €uPo + Calo* + ... (1.3)
Here [14]
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It can easily be shown that

SVt s () £ 1] gty o a
Com = D) al oyl .fakl * 0 U Madeid L aikLs)

Summation is performed here over all possible partitions of m into equal or unequal

natural components

iy +jou, 4+ ...+ kay=m (1.6)
Inserting (1.2) into (1.1) and taking (1.3) into account, we obtain
[o 0] (o]
NP Dck,ipot =0 Ln
k==0 immQ

Equating to zero the coefficients of consecutive powers of p, in (1.7), we obtain a
system of equations for the coefficients a;

M paok =0, 1+ 3 pea=0 (1.8)
h=1 k=0
}glpkckt = O (t =2,3,.. ) (1.9)

First Eq. of (1.8) has one zero root a; = 0. Let us find the coefficients of (1.2) corres-
ponding to this root. When &, = 0, Formula (1.5) becomes

(] t! ™y ag x
= —— D
‘o 2 alal a4 %2 ---0p (1.10)

1.07 4 209 + 303+ . .. + pa, =k, tdgtazt...fa,=t

c.x°=0, ¢,x°=0 when >k (1.11)
Taking into account (1.10) for a; = 0 we obtain, in place of (1.8) and (1.9),
=0, 1+4+par=0 poa,+ > pc:s"=0 (s=23,..)) 112

k=2
defining the coefficients of (1.2).
Defining the coefficients ay from (1.12) we obtain

i 1 o @ a
a,=0, o =2 ak=-527:1214kpr’p.3-.-pqq (k=2,3,...)(1.13

where
@ +1[2 (k —1) — ]I

A= (=1 oo, .kl Whem r={
(1.14)
A, = (@ =2 when r=£1

adlagl...agl kl
Summation in (1.13) is performed over all possible partitions of a natural number

2(k—1)=ra, + s, 4 ...+ qo (1.15)
into equal or unequal natural components, under the condition that
a, +oy+ ...+, =k—1 (1.16)

A series resembling (1.2) with coefficients (1.13), was obtained by Heegman [8]
(quoted by Bazhenov in [5]) for a real root of an algebraic equation. Putting

% =qx» G2 =" (1.17)

and inserting it into (1.2) we obtain, after some transformations,
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o @)
=—0 Z meror" Tt

au+1 +1 a, a (2t +2m — a)!
+ 2 (— W . quZu. lxl(t+,11;+1)1n (1.18)

where summation in the second term is performed over all partitions of consecutive, even
natural numbers 2m, beginning with the number 4, into m possible natural components
except 2
2m =0y +so,+ ...+ pa,, o1to,t...ta,=m (1.19)
Let us denote the mtemal sums of (1.18) by

2 (2t - 2k)! 2k)

2t + 2k 4 1)1
1 (t+n)' Ga41, n (M) = 2 (2t 4 2k + 1)

Ggk, n ("]) 1 (t + n)' nl (1.20)

and use them to expand (1.18) into a usable formula, This formula is

1
U = — oS0 + G0%¢363,3— o'qaGas — 5 7+°q3%66 5 + Go°qs05 5 +

1
+ 90°¢394 67 6 — 0°qeGs 6 1 3 q07q3°607 — . - . (1.21)
2. Series (1.20 can be expressed in terms of hypergeometric functions. We can easily

see that 2.1
2k)! ) B

) =L E (1, ks Lt ) (Pamma= D 3 Gt )

2k + 1)
Saper, m () = ¢ T )F(k+1, k+ 7; n+14; 4n) (2.2)

where F is a Gauss’ hypergeometric function. Hypergeometric series become truncated
at any values of & and n which may be encountered in the internal sums of (1.18), and can
then be expressed in terms of algebraic functions.
Using transformation formulas given in {14], p. 1057), we obtain
(2k)1 I'(n4+1)T (n — 2k —1/,)
al { I'(n—k)T(n—k 1) (4n)F*1

Sak, n (1) =

4'q——1

X F(k+1, k—n+1; 2k—n+ %y
4+ T (n+1)T (2k — n+ Ya) (1 — 4q)" 2 ‘/:F(

)+ (2.3)
—k,—k+7;n—2k+%;1_4n)}

I'(k+1) I (k4 2g) (40)"
G, n() = B KOO0 B (2.9
XF k41, k—n41; 2k—n 42 3’{4—;1)4—
n—ak—t,
P<"+‘}r(£it;;:;ff)s§:)(z:;“> : /F(—k,—k—%;n——-%—%-;i—lm)}

where I" () is a gamma function and all hypergeometric functions are expressed in a
finite form. Finite expressions for series o &, » 8ppearing in the first terms of the expan-~
sion (1.21) calculated by means of (2.3) and (2.4), are
1 (1—4n" n— 1 — 31
Oor = 5~ — %5 —, O = -
0T 2 2 B 2n? 1 2n (1 — 4n)'
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5 __21]-—le 2 —An b 5 *2~$51}+1()1]f’43t)r13 15m 2
S R " (1 —4n)™
W—ans 1 SmpP—on-1

O =" T 2% (1 — ’”1)"”

6. = nt—12n4-5 Tm? — 105m? - 420 — 5
8 2nt 208 (1 — 4n)"

G =492y 3t —dnd
®T e —dm)” 2P

gt —3n+-1 o 21008 — 420m8 4 2529 — 60 4+ 5
o =18— + } (2.5)
7 617 (1 — 4n)" 2

Since an algebraic polynomial is a particular case of an entire function, the above
expansions can be used for determination of the roots of algebraic equations.

Limiting ourselves to the term of (1.1) containing 4™, we shall consider an m«th order
Eq.

m
fiz)= 3 put =0 (2.6)
k=0
On substitution

909z = 03 —q¢’3 = 05 ooy (1) @* gy =@y, ..., u = — gL @D
7q. (2.6) becomes

F@ =1 =1 4038 4038 + ...+ 08" =0 (2.8
It is now easy to obtain, from {1.18), the following expression for a root of (2.8) with
the sma!lest modullz: tm_l (2.9)
) O (2ta+3ts+ ... miy)l
L= Z m Z z 2 g @
R iy AW A T Bt - (1) £ FAT
In parucular, for a 2-nd, 3-rd, 4-th and 5+th degree Eqs.. we obtain
{ = Go1 (wg) for m=2, §= 6sts. 21 () for m =3
8=}
L= 2 Z 035+4r pssari1(@g) for m=4 (2.10}
§=0
oo p 00 s
(0 &) [0 .
== 2 H 2 T Z T O3s+ar+sk, 2s+3r+ak+1 (wg) for m=35
et e A e N

In practice, small number of terms in Formulas (2.9) and (2.10) can be used, provided
that the root is expanded at a point which is sufficiently close to it. This makes it possi-
ble to utilize the »xpansion (1.21) and Expressions (2.5),

8. We shall now determine the radii of convergence for internal sums o, in (1.18),

(1.21), (2.9) and (2.10) when the values of all indices except the indices of internal sums,
are fixed. We can write any of these sums as

(2t 4 i)l (3.1)
E LW+ @'

where, by our assumption, ¥ and s are constants. Radius of convergence of {(3.1) can be

found using a well known formula
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1 (2t -2 A)ltl(z+¢)l
PR Y [ e [P D
This yields the value p = 1/4, hence the sums llsted above converge, if (provided
also that (1.17) and (2.7) are taken into account)
Pon

fog | ==

< T (3.2)

holds.
Let us find the region of convergence for the considered sum, on the £-plane.
Using (1.1) we can write the inequality (3.2) as

2f (E) 1" (B) 3.3
12 (8) <1 @3
Now let us put
2 (m—1) . , 2 (m—1) .
AEFE® = 2 A4, e =Y B (3.4)
b==0 h==0

where m is the degree of a polynomial f(z).
Using (3.4) we can obtain from (3.3) an equation of regions of convergence of internal
sums in expressions for roots of an algebraic Eq.

2 (m—1) 2 (m—1)—k
FRO=2+ 3 dicosk=0  (d=2 3 D, 48" (63
k=1 sum0
_ | By Ay
Pu=| 4 5,

It can be assumed that the series (2.9) converges when the polynomial (1.1) is
expanded at the point & lying within a region of convergence (3.5).

4. Expansion (2.9) of a root of an algebraic m-th degree equation obtained previously
is of sufficiently general form(*), and can be used to obtain exact solutions of equations
soluble in radicals or in terms of some special functions in cases when summation of the
obtained series is feasible. We shall now consider some examples.

a) For m= 2
@ =22+ pz+qg=0 (4.1)
By (2.10) and (2.5) we have
L — 601 () = 1:—‘%_—‘"' (4.2)
where
t=—(@/9)z n=q/p o z=—lhp+ VYpl—yqg (4.3)
b) Form=3
(=24 ps+g=0 (4.4)
By (2.10) and (1.20) we have
o O o (2435
= 2 2 (t+2s + 1) orf (4.5)
8=0 t=0
where
2
g:——_q’;z, w2 =0, 0)8:‘—% (4.6)

*) Equation which does not include the unknown in the first power (p, = 0), should be
transformed using a displacement transformation, before (2.9) can be applied.
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Substitation of (4.6) into (4.5) yields

(3s) g2

=% E v!(25—4—‘1)1( EE‘) .7
S={)
Since
G)  (Ys)e (®ha)e (ﬂ)g
ST2s F I = Cl)esl \ 4
therefore (4.7) yields
= g 1 2.3, _» 272\
==L F (g, gyt (= (55)) “w8

Using a transformation formula {given in [14], p. 1057, Formula 9.131.1) we obtain

Pmm L (e 1y (L I P

>

3% 2 BFT (4.9
Applying to it the summation formula (given in [14], p. 1054, Formula 9.121.4) we have
fo' n= 14’3;

z= *23‘% {{5 (82 i)ifa} Ys ol [u_ t+ (tﬁ + I)l/t] 1/3} (4.10)
which on substitution of ¢ from (4.8) into it, becomes the well known Cardan’s formula
- q _gi pe\e\a _ e _ q® PP
==+ T g) ) (- (R R

¢) Expansion of & root of

't oay —14 =0 {4.12)
is of interest. Applying (2.9) we obtain
1 (rt)l 1\
y‘?7;3uum—Ut+utt‘;?> (4.13)
=0
or
1 12 n—4{, 2 3
= = Ia — T H gos
V=gnt "“2<n v T n—1' n—1
n—2 noL_ n" i
U =1 p—t] (:e—-'i)“‘i;:—'?) (4.14)
A necesasary and sufficient condition for (4.13) or (4.14) to converge, is
n
tz|> = (4.15)
We know that {4.12) has an expansion due to Mellin {2]
e (= 1°T (1 + @)/ n)
y="7 2 TG IVTAFi—G=0a/m* (4.16)
its condition of convergence being
n
(= < [y (417

We see that (4.13) supplements the expansmn obtained by Mellin and enables us to
obtain a solution at any value of parameter x.

5. Several examples of application of obtained results to some problems of mechanics
and numerical methods, follow.
a) In (15} a characteristic Eq.
H® + py H: + p\H + py = 0

= Mns wle— D = mb e mta rg=m — A
P2 1*1'~M » m» Po 1—-}~M’ 1 + 4,
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e | — o m — Bg — Mm? = pth’

A=1(1—e™) M B D= w 2 .10
was obtained, where m is a dimensionless wave number, M is the ration of densities of the
fluids and W is the Weber number (p, is the density, & is the thickness of the boundary
layer, V is velocity and o is surface tension coefficient), We shall try to determine the
dependence of the oscillatory increment i.e. of the imaginary part of a complex root of (5.1),
on the wave number for various values of the Weber number W.

In{15] a graphical solution was obtained. From (5.1), we have

z3 - blz -+ bo = 0, H=1z— ’/31?; (5.2}
and .
=3Pty 2P — 9pipe - 2T (5.3)

3 ’ 27
Also, Im(H) = Im(z). It can easily be shown that the second and third root of (5.2) can be
expressed in terms of the first (real) root, by

Z3g = — lfg zZy *+ 1/21: P 3212 —i— 45—1 (5.4)
2=V, Vi T 45 (5.5)

To determine z , we can apply one of the Formulas (4.13) or (4.16). Eqs. (5.2) can be
transformed into (4.12) by means of a substitution
z =y (b)"? (5.6)
Subsequent calculation confirmed the results obtained in [15]. We see that the analyti-
cal method of solution utilised by us makes it possible to achieve any predetermined
degree of accuracy.
b) In [16] a problem of the breakup of a current of viscous fluid. Characteristic equation
has the form
2k [y, 2kl Iy(ka) ;. _ ok oo by (ka) 8 — k2
az+10(ka){:, (ka) — 2, 2 Iy (la)]a = ke oA
(12 = k% 4 a/v) (5.7
where a denotes radius of the current, ka is a dimensionless wave number, p is the
density of the fluid, o is surface tension coefficient, v is kinematic viscosity, and a is
the complex frequency of oscillations while I ;(ka) and I, (ka) are Bessel functions of an
imaginary argument. Author of [16] states that the equation is too complicated to be
solved by analytical methods and only considers the limiting cases.
Let us introduce dimensionless parameters

m=ka, z=a0a (2;3 )‘/’, A2=Lp= _a_pzc_ (5.8)
n
into (5.7). Then,
lo=Vm*3 1 (5.9)

and Eq. {5.7) assumes the form
2m2z 2m Vm: + Az F(m) D—
2 — I — v P -
2+, (m)[ 1 (m) B AT (Vo E ) L'(Vm +Az)]

Az I, (m)
2m2 4 Az Iy (m)

Expanding Bessel functions and their derivatives into series in zeros of their arguments
we obtain from (5.10), after some transformations,

X M=o (5.11)
{=0

=m ({1l — m?)

(5.10)

where
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mtly (m) — 6m3ly (m) — m (1 — m?) I1 (m) .12

§= m2+.‘lz, .ﬂ[o = Io(m)

_m2(16 —=3m®) Iy (m) — 2m (8 + Tm®) I, (m) —m (1 — m®) I, (m) A2
81, (m)

(16 (¢ —1)t (¢t +1) 8t (¢ +1)m?+ m#] Io (m)—[Bt (t +1) m +-2(3 + 4ty m®] Iy (m)
- 221 (¢ - 1)) I (m)
m (1l —m?) I (m) 42
221 (¢ 4+ 1)1 Io (m)
Let us find the cscillation increment for the case of flow of a current of a 75% aqueous
solution of glycerine. In this case we have 42 = Lp = 33.5. Fig. 1 shows the result of

our computation. Broken curve is obtained from

. m? ma 1 Y2

p= T (-1_2 +_2_m2(1—m2)> (5.12)
which results from the substitution of dimensionless parameters (5.8) into a simplified
equation given in [16]. Fig. 1 also shows the position of maximum increment for the case

when the current is composed of ideal fluid (Rayleigh). We see that the curves differ from

D.-’M,T //
it/ @\
EmrAESA @/

016 . N
/ \
/ \

p:
/ \
m _
0 1 |
Fig. 1. Fig. 2.

M

M,

for (t=2,3,...)

B

each other. Values of oscillation increments obtained by means of a more exact solution
of characteristic equation are, roughly, one-and-half times as large as those obtained by
means of (5.12) quoted in [16]. This, of course, gives much better idea of the length of the
aunbroken part of the considered current,

c) Consider the equation of dissection of a circle

f2)=22—a=0 (5.13)
Region of convergence of internal sums in (1.21) is, by (3.5), defined by Eq.
F (R, 0) = — (64a® + 39 R 19) 4 128aR% cos 58 = 0 (5.14)

Fig. 2 shows regions of convergence of series for each of five roots of (5.13) fora = 2.
Let us compute the real root of the equation, expanding f(z) at the point £ = 1.2 lying
inside the region of convergence of the real root. Then, in place of (5.13), we obtain

-+ 6nf + 14.4n% + 17.28n2 + 10.368n -+ 0.48832 — 0 (5.15)
where
N=2z—12 (5.16)

We shall use the first two terms of (1.21), on assumption that the remaining terms are

small enough to be neglected. We obtain
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go = 0.047099, g, = 1.66667, g, — 1.38889,

wy = gy = 0.0784976, 04, = 1.093897, 0.5 — 1.56252

and finally
N = — 0.05130andz = 1.14870 (5.17)
with high degree of accuracy. This can easily be checked, as the real root of (5.13) for
= 2,isz = 20-2 = 1,148698 (see e.g. [17]).
d) Let us find the smallest root of the equation [18]
f(z)= :7—_:7)__ 36 i’:‘.ﬁ—— I_J_':)z* —VTLE.",‘*—-‘_Gi LE _7_:—._1__ =0 (5.18)
2 13 52 143 286 24 3432
Its roots can be located using any of the numerous existing methods. Graph of f(z)
based on approximate computations shown on Fig. 3, permits us to choose

_' T
a point sufficiently near to the required root. Taking
u=z—0.02 (5.19)

Z
we obtain the coefficients of a transformed equation
[‘ \/ go = — 0.00494670, g, — — 17.42303
4
-10 g3 = 109.73202, M = ¢49, = 0.0861865

Fig. 3. Using again only the first two terms of (1.21) we
obtain
u e 0.0CE4454 or 2 = 0.0254454 (5.20)

while (18] gives its value as z = 0.02544604.
e) Let us find a real zero of the function

f(2) = cos zcoshz — 1 =0 (5.21)
Approximate values of zeros of f(x) are given by [19]
n=1@nt1)n (5.22)

where n denotes the n-th zero, when the trivial value x = 0 is disregarded.
Expansion of f(x) at the point x = 0 has the form
o ) 2 £ 228
f@) =20V G 2 @y — =0 (5.23)
K um) §=0
which, on application of a formula ([14], p. 29, Formula 0.316) for multip’ication of power

series, becomes
©0

- K __ / (—1) (—1)*
j(s) é}l okt =0 (cgy =2 Z T =+ [(29)112) (5.24)
or ([14], p. 18, Formulas 0.153.1 and 0.153. 3\
s 228
20 =(—1) DI == (5.25)

Let us disregard the trivial solation { = 0. To compute the zero %, , we shall expand
the function f({) into a series

[0} [oe]
FO=2) Gumt =D p*, n=g—ap (5.26)
k=0 h=0
obtaining

o0
1 1
== 1) (apt) = — A k=) (k=5 +1) ey e *D (52D
ke=8
To obtain the first zero #,, we shall again use first two terms of (1.21). The coeffi-
cients now will be
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Gs = — T.40712, g3 = — 4.2416 *10-4, g5 = 4.16592 *10-8,
1 = 3-1418"10-3, o, — 1.003162, 0, = 1.0159,

and they yield the value of 7 = x4 ~—a,* = 7.43052.

Substituting into it the value of @, calculated according to (5,22), we obtain the first
zero of (5.21) as x, = 4.73004, while [19] quotes %y = 473,

f) We shall find a real zero of the function

f@ =T V=0 (5.28)

This problem was solved by Euler who expanded the zero into an infinite product; it is
quoted in [20].

Let us use {3.3) to construct the regions of convergence for the expansion of (5.28).
Fig. 4 shows the regions of convergence of series for the first three zeros of (5.28). A
straight line parallel to the abscissa with the

Fﬂ l\ I / \ ordinate equal to %, gives regions of convergence
0.50 for three given zeros on the real axis., Function
025\ \ [ \ ;1 (5.28) can be expanded into a series at a zero,
w \\/ as follows
Z o) z;"
0 0 20 f(z)= }3 (—1iF wnE 0 629

Fig. 4. L=0
Let us expand f{z)at the point & = 1.4 lying
within the region of convergence (Fig. 4). We obtain
go = — 0.045085370, q, = — 0.34104094, ¢, = 0.043352828,
N = q4q, = 0.015375957,
which yields, for the first zero of (5,28), the value of g 1 = 1,4457964. In [20] it is given
as a, = 1.44579.
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